BigQuery ML Tutorial: Step-by-Step Guide With Examples (2024)

Complete BigQuery ML Tutorial

Quick Start Guide

  1. Prerequisites
    • Google Cloud account
    • BigQuery access
    • Sample dataset

Getting Started with BigQuery ML

Model Types Available

Model TypeUse CaseExample
Linear RegressionNumeric predictionHousing prices
Logistic RegressionBinary classificationCustomer churn
XGBoostComplex patternsFraud detection
Deep Neural NetworksImage/text analysisSentiment analysis

Basic Model Creation

CREATE OR REPLACE MODEL `project.dataset.churn_model`
OPTIONS(
  model_type='logistic_reg',
  input_label_cols=['churned']
) AS
SELECT
  churned,
  tenure,
  monthly_charges,
  total_charges,
  contract_type
FROM
  `project.dataset.customer_data`
WHERE
  churned IS NOT NULL;

Model Evaluation

SELECT
  *
FROM
  ML.EVALUATE(MODEL `project.dataset.churn_model`);

Best Practices

  1. Data Preparation

    • Handle missing values
    • Normalize features
    • Split train/test data
  2. Model Optimization

    • Use early stopping
    • Implement cross-validation
    • Monitor training metrics

Resources

Note: Features and syntax are current as of February 2024. Check documentation for updates.